A Marginalized Likelihood Ratio Approach for detecting and estimating multipath biases on GNSS measurements

Cheng Cheng, Jean Yves Tourneret, Quan Pan, Vincent Calmettes

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In urban canyons, non-line-of-sight (NLOS) multipath interferences affect position estimation based on Global Navigation Satellite Systems (GNSS). In this paper, the effects of NLOS multipath interferences are modeled as mean value jumps appearing on the GNSS pseudo-range measurements. The Marginalized Likelihood Ratio Test (MLRT) is proposed to detect, identify and estimate the NLOS multipath biases. However, the MLRT test statistics is generally difficult to compute. In this work, we consider a Monte Carlo integration technique based on bias magnitude sampling. The Jensen inequality allows this Monte Carlo integration to be simplified. The interacting multiple model algorithm is also used to update the prior information for each bias magnitude sample. Finally, some strategies are designed for estimating and correcting the NLOS multipath biases. Simulation results show that the proposed approach can effectively improve the positioning accuracy in the presence of NLOS multipath interferences.

Original languageEnglish
Title of host publicationFUSION 2014 - 17th International Conference on Information Fusion
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9788490123553
StatePublished - 3 Oct 2014
Event17th International Conference on Information Fusion, FUSION 2014 - Salamanca, Spain
Duration: 7 Jul 201410 Jul 2014

Publication series

NameFUSION 2014 - 17th International Conference on Information Fusion

Conference

Conference17th International Conference on Information Fusion, FUSION 2014
Country/TerritorySpain
CitySalamanca
Period7/07/1410/07/14

Keywords

  • GNSS
  • MLRT
  • multipath mitigation
  • multiple model
  • urban positioning

Fingerprint

Dive into the research topics of 'A Marginalized Likelihood Ratio Approach for detecting and estimating multipath biases on GNSS measurements'. Together they form a unique fingerprint.

Cite this