A “graphdiyne-like” anti-fouling TBBPA molecularly imprinted membrane synthesized based on the delayed phase inversion method: A concomitant permeability and selectivity

Chao Yu, Jianping Song, Yan Yan, Jia Gao, Wendong Xing, Minjia Meng, Yongsheng Yan, Zhongfei Ma, Yilin Wu

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

Integration of membrane and nanomaterial is a forward-looking research orientation, which can effectively overcome the permeability-selectivity trade-off relationship and improve anti-fouling performance. However, the current combination methods usually suffer from defects due to the aggregation and embedding of nanomaterials, resulting in serious performance deterioration of membrane during continuous operation process. Herein, “graphdiyne-like” Tetrabromobisphenol A molecularly imprinted membranes with uniform and dense SiO2 layer, namely TB-MIMs, are successfully prepared by delayed phase inversion method (DPIM). We found that the membrane prepared by DPIM exhibits both promoted pure water flux (405 L m−2 h−1) and enhanced adsorption capacity (83.476 mg g−1) by comparing with the membranes prepared by blending and grafting methods. The role of molecularly imprinting technique contributes to improving the selectivity of TB-MIMs toward TBBPA, leading to a high selectivity factor of 3.39, 3.27 and 3.05 for bisphenol A, paratert-butyl phenol and 4, 4'-dihydroxybiphenyl, respectively. Moreover, the flux of TB-MIMs is nearly recovered to an original level after washing the bovine serum albumin fouled membrane surface with deionized water. Notably, the TB-MIMs presents a high rejection rate for bovine serum albumin (94%), humic acid (92%) and alginic acid (91%) in natural water, indicating its bright actual application value. These superior performances highlight the advantage of DPIM strategy over traditional methods in terms of combination between membrane and nanomaterials.

Original languageEnglish
Article number120808
JournalJournal of Membrane Science
Volume659
DOIs
StatePublished - 5 Oct 2022
Externally publishedYes

Keywords

  • Anti-fouling
  • Bovine serum albumin
  • Delayed phase inversion method
  • Graphdiyne-like Tetrabromobisphenol A molecularly imprinted membranes
  • Permeability-selectivity

Fingerprint

Dive into the research topics of 'A “graphdiyne-like” anti-fouling TBBPA molecularly imprinted membrane synthesized based on the delayed phase inversion method: A concomitant permeability and selectivity'. Together they form a unique fingerprint.

Cite this