3D deep neural network-based brain tumor segmentation using multimodality magnetic resonance sequences

Yan Hu, Yong Xia

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

12 Scopus citations

Abstract

Brain tumor segmentation plays a pivotal role in clinical practice and research settings. In this paper, we propose a 3D deep neural network-based algorithm for joint brain tumor detection and intra-tumor structure segmentation, including necrosis, edema, non-enhancing and enhancing tumor, using multimodal magnetic resonance imaging sequences. An ensemble of cascaded U-Nets is designed to detect the tumor and a deep convolutional neural network is constructed for patch-based intra-tumor structure segmentation. This algorithm has been evaluated on the BraTS 2017 Challenge dataset and achieved Dice similarity coefficients of 0.81, 0.69 and 0.55 in the segmentation of whole tumor, core tumor and enhancing tumor, respectively. Our results suggest that the proposed algorithm has promising performance in automated brain tumor segmentation.

Original languageEnglish
Title of host publicationBrainlesion
Subtitle of host publicationGlioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries - 3rd International Workshop, BrainLes 2017, Held in Conjunction with MICCAI 2017, Revised Selected Papers
EditorsBjoern Menze, Alessandro Crimi, Hugo Kuijf, Mauricio Reyes, Spyridon Bakas
PublisherSpringer Verlag
Pages423-434
Number of pages12
ISBN (Print)9783319752372
DOIs
StatePublished - 2018
Event3rd International Workshop on Brainlesion, BrainLes 2017 Held in Conjunction with Medical Image Computing for Computer Assisted Intervention , MICCAI 2017 - Quebec City, Canada
Duration: 14 Sep 201714 Sep 2017

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10670 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference3rd International Workshop on Brainlesion, BrainLes 2017 Held in Conjunction with Medical Image Computing for Computer Assisted Intervention , MICCAI 2017
Country/TerritoryCanada
CityQuebec City
Period14/09/1714/09/17

Keywords

  • Brain tumor segmentation
  • Cascaded U-Nets
  • Deep convolutional neural network
  • Deep learning
  • Magnetic Resonance Imaging (MRI)

Fingerprint

Dive into the research topics of '3D deep neural network-based brain tumor segmentation using multimodality magnetic resonance sequences'. Together they form a unique fingerprint.

Cite this