TY - JOUR
T1 - Influence Spread in Geo-Social Networks
T2 - A Multiobjective Optimization Perspective
AU - Wang, Liang
AU - Yu, Zhiwen
AU - Xiong, Fei
AU - Yang, Dingqi
AU - Pan, Shirui
AU - Yan, Zheng
N1 - Publisher Copyright:
© 2013 IEEE.
PY - 2021/5
Y1 - 2021/5
N2 - As an emerging social dynamic system, geo-social network can be used to facilitate viral marketing through the wide spread of targeted advertising. However, unlike traditional influence spread problem, the heterogeneous spatial distribution has to incorporated into geo-social network environment. Moreover, from the perspective of business managers, it is indispensable to balance the tradeoff between the objective of influence spread maximization and objective of promotion cost minimization. Therefore, these two goals need to be seamlessly combined and optimized jointly. In this paper, considering the requirements of real-world applications, we develop a multiobjective optimization-based influence spread framework for geo-social networks, revealing the full view of Pareto-optimal solutions for decision makers. Based on the reverse influence sampling (RIS) model, we propose a similarity matching-based RIS sampling method to accommodate diverse users, and then transform our original problem into a weighted coverage problem. Subsequently, to solve this problem, we propose a greedy-based incrementally approximation approach and heuristic-based particle swarm optimization approach. Extensive experiments on two real-world geo-social networks clearly validate the effectiveness and efficiency of our proposed approaches.
AB - As an emerging social dynamic system, geo-social network can be used to facilitate viral marketing through the wide spread of targeted advertising. However, unlike traditional influence spread problem, the heterogeneous spatial distribution has to incorporated into geo-social network environment. Moreover, from the perspective of business managers, it is indispensable to balance the tradeoff between the objective of influence spread maximization and objective of promotion cost minimization. Therefore, these two goals need to be seamlessly combined and optimized jointly. In this paper, considering the requirements of real-world applications, we develop a multiobjective optimization-based influence spread framework for geo-social networks, revealing the full view of Pareto-optimal solutions for decision makers. Based on the reverse influence sampling (RIS) model, we propose a similarity matching-based RIS sampling method to accommodate diverse users, and then transform our original problem into a weighted coverage problem. Subsequently, to solve this problem, we propose a greedy-based incrementally approximation approach and heuristic-based particle swarm optimization approach. Extensive experiments on two real-world geo-social networks clearly validate the effectiveness and efficiency of our proposed approaches.
KW - Complex network
KW - influence spread
KW - optimization
UR - http://www.scopus.com/inward/record.url?scp=85104612381&partnerID=8YFLogxK
U2 - 10.1109/TCYB.2019.2906078
DO - 10.1109/TCYB.2019.2906078
M3 - 文章
C2 - 30951488
AN - SCOPUS:85104612381
SN - 2168-2267
VL - 51
SP - 2663
EP - 2675
JO - IEEE Transactions on Cybernetics
JF - IEEE Transactions on Cybernetics
IS - 5
M1 - 8681274
ER -